In-situ protection of enamel erosive lesions by fluoride: network meta-analysis

Jonathan E Creeth¹, Gary Smith¹, Billy Franks¹, Anderson T Hara², Domenick T Zero²

1: Haleon, Weybridge, UK

2: Indiana University School of Dentistry, Indianapolis, USA

April 2022

Conflict of Interest statement

- These studies were funded by Haleon, which markets the Sensodyne Pronamel and Aquafresh products tested
- Jonathan Creeth, Gary Smith and Billy Franks are employees of Haleon
- Anderson Hara and Domenick Zero are employees of Indiana University, which has received funding from Haleon, and have received consultant income

Introduction

- Erosive toothwear: an important `modern' oral health condition ... but difficult to measure
- In situ clinical methods are critical to our understanding
- Haleon (ex GSK CH) has run 14 in situ studies / 22 products
 - Measure **promotion of remineralisation by F** (dose-response)
 - Measure resistance to demineralisation of F-treated surface
 - Measure effect of formulation ingredients & vehicle:
 - F species / Paste vs rinse / polyphosphates / stannous / surfactant
- What can we learn across this study set?

...apply Network Meta-Analysis approach

Methods: in situ clinical study protocol

Erosive toothwear: an important `modern' oral health condition

- Single-centre, randomized, multi-way crossover* in situ studies, ethics committee-approved (OHRI) in healthy adults (N=15-58)
- Examiner-, subject- and analyst-blind

Bovine enamel specimens acid-challenged:

- **25 min in grapefruit juice** (citric acid, pH ~3.0).
- Single use of 1.5 g test dentifrice:
 - 25 s brushing + 60 s or 95 s swishing + expectorate + rinse
- 4-hour intra-oral remineralisation period
- Re-challenge with acid (grapefruit juice)

Enamel hardness assessed at each stage via Surface Microhardness (SMH) using a Wilson 2100 indenter

Study measures

After initial demineralisation challenge...

Remineralisation:

Surface Micro-Hardness Recovery: amount of 'lost' hardness recovered due to treatment

Acid Resistance:

- Acid Resistance Ratio: Effect of 2nd demin challenge relative to 1st
- Overall protection vs dietary acid:
 - Relative Erosion Resistance: Overall hardness change across cycle of remin & demin

Methods: Network Meta-Analysis approach

Principle of NMA:

- Determines a treatment effect as mean value adjusted across a set of studies with (near-) identical protocol
- Allows comparisons between treatments not tested in same study

The in situ erosion study Meta-Analysis Network

Results: Forest plot of Network Meta-Analysis

Fluoride dose-response

Remineralisation promotion (Surface microhardness recovery)

Demineralisation reduction (Acid resistance ratio)

HALEON

Key ingredient effects on remineralisation (SMHR)

Ingredient effect	Specifics	P-value	Products compared
Surfactant	Tegobetain > SLS	p=0.006	Pronamel vs Crest Cavity Protection (1100 & 1450ppm F)
Fluoride type	F ⁻ > FPO ₃ ⁻	p<0.001	Colgate Cavity Protection vs. Pronamel or Aquafresh(p=0.065)
Rinse	paste+rinse > paste	p=0.043	Pronamel toothpaste +/- Pronamel mouthwash
Sn ²⁺	no Sn ²⁺ > Sn ²⁺	P=0.001	Crest Pro-Health 'Smooth' vs Pronamel or Aquafresh(p=0.053)
Phytate	no phytate > phytate	p<0.001	Pronamel-Phytate vs Pronamel
Pyrophosphate	no pyro > pyro	p<0.001	Crest 3D White vs Pronamel or Aquafresh(p=0.004)
HMP/Sn ²⁺	no HMP/Sn ²⁺ > HMP/Sn ²⁺	p<0.001	Crest Pro-Health vs Pronamel or Aquafresh

Conclusions

NMA approach:

Effective approach to understand/compare efficacy across a body of studies ...linked by products-in-common

This NMA: 14 studies/22 products/consistent in-situ erosion model:

- ► F⁻ ion is key to remineralisation, and important to demineralisation resistance
- F rinses work well, and can add to F toothpaste benefits
- Stannous ions can reduce remin
 - but can enhance demin resistance
- Polyphosphates can reduce remin
 - but don't enhance demin resistance in this model (for those tested)
- Choice of surfactant can influence remineralisation

F effects on enamel remin & demin are highly formulation-dependent